Сам себе ювелир, или как проверить серебро на подлинность. Как проверить серебро на подлинность в домашних условиях йодом, серной мазью, хлебным мякишем, магнитом, реактивами, мелом, теплом, на слух, ляписным карандашом, тестом на серебро из аптеки, кисло

Определение серебра состоит в электрохимическом осаждении продуктов восстановления серебра на предварительно подготовленном твердом рабочем электроде из инертного материала (например, углеситалла) из раствора, который представляет собой анализируемое вещество, растворенное в фоновом электролите, и последующем электрохимическом растворении ранее осажденных продуктов восстановления серебра с регистрацией вольтамперной кривой. Концентрацию серебра определяют по величине анодного пика электрохимического растворения продуктов восстановления серебра. В качестве фонового электролита, в котором предварительно растворяют анализируемое вещество, используется серная кислота концентрации не менее 0,01 моль/дм 3 с добавкой ионов меди таким образом, чтобы в анализируемом растворе суммарная концентрация ионов меди была не менее 3·10 -6 моль/дм 3 . Электрохимическое осаждение продуктов восстановления серебра проводят при отрицательном потенциале твердого рабочего электрода, установленном в диапазоне от -250 до -300 мВ (относительно хлоридсеребряного электрода сравнения). Электрохимически растворяют осажденные продукты восстановления серебра при скорости изменения потенциала на рабочем электроде не более 500 мВ/с и регистрируют вольтамперную кривую. Аналитическим сигналом серебра является высота анодного пика электрохимического растворения серебра на вольтамперной кривой в области потенциалов от +300 до +500 мВ. Изобретение позволяет измерять микроконцентрации серебра (до 5·10 -8 моль/дм 3) в различных объектах с высокой точностью. На определение микроконцентраций серебра не оказывают мешающее влияние ионы других элементов, присутствующие в анализируемом растворе, что позволяет увеличить предел обнаружения серебра.

Настоящее изобретение относится к области аналитической электрохимии, в частности к методам измерения концентрации серебра в растворах, и может быть использовано для определения микроконцентраций серебра в питьевой, природной, сточной воде, пищевых продуктах и пр.

В настоящее время известны электрохимические методы измерения концентрации серебра на различных типах рабочих электродов: угольный, ртутный, графитовый, платиновый, углеситалловый, стеклоуглеродный. Известные методы измерения концентрации серебра с использованием различных типов рабочих электродов реализованы на трехэлектродной электрохимической ячейке, включающей рабочий электрод, вспомогательный электрод и электрод сравнения(например, хлоридсеребряный).

Известный способ определения серебра состоит в вольтамперометрическом определении концентрации серебра с использованием твердого рабочего электрода из стеклоуглерода. Электролиз с целью осаждения продуктов восстановления серебра на торце рабочего электрода проводят при потенциале -600 мВ (относительно хлоридсеребряного электрода сравнения - х.с.э.), в качестве фонового электролита используют аммиачный раствор с рН 9,3.

Осажденный продукт электрохимически растворяют при анодном сканировании потенциала рабочего электрода и одновременно регистрируют вольтамперную кривую. Аналитическим сигналом серебра является анодный пик с максимумом при +930 мВ. При измерении концентрации серебра описанным выше методом чувствительность определения составляет 5·10 -7 моль/дм 3 .

Недостатком описанного вольтамперометрического способа измерения концентрации серебра является относительно невысокая чувствительность определения серебра, а также существенное влияние ионов меди на аналитический сигнал серебра, которое устраняется введением операции замены анализируемого раствора на чистый фоновый раствор (не содержащий ионов меди) перед стадией электрохимического растворения ранее осажденных продуктов восстановления серебра и регистрации вольтамперной кривой с целью уменьшения влияния ионов меди на аналитический сигнал серебра и увеличения чувствительности измерения серебра в анализируемом растворе (до 5·10 -7 моль/дм 3).

Предлагаемый способ вольтамперометрического измерения концентрации серебра свободен от указанных выше недостатков и позволяет при сравнительно небольшом времени анализа одной пробы с высокой точностью измерять концентрации серебра на уровне 5·10 -8 моль/дм 3 .

Эти достоинства предлагаемого способа вольтамперометрического измерения концентрации серебра достигаются за счет использования в качестве фонового раствора, в котором растворяется анализируемое вещество при подготовке анализируемого раствора, серной кислоты концентрации не менее 0,01 моль/дм 3 с добавкой ионов меди концентрации не менее 3·10 -6 моль/дм 3 , а вольтамперометрическое измерение концентрации серебра в анализируемом растворе включает осаждение продуктов восстановления серебра на поверхности рабочего электрода при потенциале рабочего электрода, задаваемом в диапазоне от -250 до -300 мВ (относительно х.с.э.), и их последующее растворение при развертке потенциала рабочего электрода.

Предлагаемый способ вольтамперометрического измерения концентрации серебра заключается в следующем. Устанавливают на вольтамперометрическом анализаторе трехэлектродную электрохимическую ячейку, включающую твердый рабочий электрод из инертного материала (например, углеситалла), вспомогательный электрод и электрод сравнения. Перед началом работы и после проведения анализа индикаторную часть твердого рабочего электрода промывают бидистиллированной водой и протирают мягкой фильтровальной бумагой. После установки электрических параметров измерительного цикла электроды погружают в анализируемый раствор, представляющий собой анализируемое вещество, растворенное в фоновом электролите с добавкой ионов меди концентрации не менее 3·10 -6 моль/дм 3 . Ионы меди могут изначально содержаться в анализируемом растворе как примесь. Так как перед началом измерений неизвестно, присутствуют ли ионы меди как примесь и какова их концентрация, они вводятся в анализируемый раствор на уровне минимальной концентрации, необходимой для проведения вольтамперометрического анализа на содержание серебра. Проводят электрохимическое осаждение серебра (в виде продуктов восстановления) при отрицательном потенциале рабочего электрода, задаваемом в диапазоне от -250 до -300 мВ (относительно х.с.э.). Электрохимически растворяют осажденный продукт (указанные продукты восстановления серебра) при определенной скорости изменения потенциала рабочего электрода и регистрируют вольтамперную кривую растворения продуктов восстановления серебра. Аналитическим сигналом при этом является анодный пик растворения продуктов восстановления серебра на вольтамперной кривой в области потенциалов от +300 до +500 мВ.

Для определения концентрации серебра в анализируемом растворе используют метод стандартной добавки градуировочного раствора серебра в анализируемый раствор, содержащий анализируемое вещество, растворенное в фоновом электролите, и ионы меди. После регистрации вольтамперной кривой анализируемого раствора, содержащего анализируемое вещество, растворенное в фоновом электролите, ионы меди и градуировочный раствор, определяют массовую концентрацию серебра в анализируемом веществе по соотношению величин анодных пиков растворения продуктов восстановления серебра в анализируемом растворе и в анализируемом растворе, содержащем градуировочный раствор серебра.

Основные преимущества предлагаемого способа вольтамперометрического определения серебра состоят в высокой чувствительности и точности измерения микроконцентраций серебра. В отличие от существующего способа вольтамперометрического определения серебра, в котором ионы меди оказывают мешающее влияние на аналитический сигнал серебра , в предлагаемом способе присутствие ионов меди в избытке по отношению к содержанию серебра (соотношение медь: серебро не менее 100:1) в анализируемом растворе способствует увеличению чувствительности определения серебра (до 5·10 -8 моль/дм 3). Не менее существенным преимуществом предлагаемого способа является сокращение времени измерений анализируемого раствора за счет того, что все стадии вольтамперометрического определения серебра проводят в одном и том же анализируемом растворе в отличие от существующего способа, в котором предлагается использовать операцию замены анализируемого раствора на чистый фоновый раствор (не содержащий ионов меди) перед стадией электрохимического растворения и регистрации вольтамперной кривой анализируемого раствора .

Предлагаемый способ вольтамперометрического измерения концентрации серебра был реализован на практике с использованием анализатора вольтамперометрического АВА-3 по ТУ 4215-068-00227703-2004 (производство НПП «Буревестник», ОАО). В работе использовалась трехэлектродная электрохимическая ячейка, включающая рабочий электрод из углеситалла, вспомогательный платиновый электрод и хлоридсеребряный электрод сравнения. Перед началом работы или после проведения анализа, перед следующим погружением в анализируемый раствор индикаторную часть рабочего электрода промывали бидистиллированной водой и протирали мягкой фильтровальной бумагой. Устанавливали на вольтамперометрическом анализаторе электроды в держатели, вносили в стаканчик электрохимической ячейки фоновый раствор (серная кислота концентрации не менее 0,01 моль/дм 3), в котором было растворено анализируемое вещество и ионы меди концентрации не менее 3·10 -6 моль/дм 3 . Погружали в анализируемый раствор электроды. Электрохимическое осаждение продуктов восстановления серебра проводили из анализируемого раствора при потенциале -300 мВ (относительно х.с.э.) на рабочем электроде. Электрохимическое растворение осажденного концентрата (продуктов восстановления серебра) и регистрацию аналитического сигнала серебра в области потенциалов от +300 до +500 мВ проводили при развертке потенциала рабочего электрода от 0 до +700 мВ.

Предлагаемый способ вольтамперометрического измерения концентрации серебра найдет широкое применение в аналитической электрохимии. Для измерения концентрации серебра по предлагаемому способу не требуется наличия весьма специфических навыков у исполнителя, которому достаточно владеть стандартными приемами подготовки электродов и прибора к работе. По сравнению с известными методами существенно повышается чувствительность анализа благодаря: использованию в качестве фонового раствора серной кислоты концентрации не менее 0,01 моль/дм 3 с добавкой ионов меди концентрации не менее 3·10 -6 моль/дм 3 ; проведению вольтамперометрического определения серебра при установке потенциала рабочего электрода в диапазоне от -250 до -300 мВ (относительно х.с.э.) на стадии электрохимического накопления продуктов восстановления серебра из анализируемого раствора; развертке потенциала рабочего электрода от 0 до +700 мВ, что приводит к значительному увеличению (на 1-2 порядка) чувствительности измерений, а также к сокращению времени анализа, что делает работу по определению микроконцентраций серебра более производительной.

Предлагаемый способ был использован для определения массовой концентрации серебра в питьевой, природной воде. Чувствительность определения серебра в указанных объектах составляет 5·10 -8 моль/дм 3 (5,0 мкг/дм 3), при этом на селективность определения серебра оказывает благоприятное воздействие присутствие ионов меди в анализируемом растворе с концентрацией в диапазоне от 3·10 -6 до 1·10 -3 моль/дм 3 , общее время анализа одного анализируемого раствора составляет от 2 до 5 мин. (в зависимости от измеряемой концентрации).

ИСТОЧНИК ИНФОРМАЦИИ

1. Ф.Выдра, К.Штулик, Э.Юлакова. Инверсионная вольтамперометрия. М.: Мир, 1980, 278 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ вольтамперометрического измерения концентрации серебра в анализируемом растворе, заключающийся в том, что на индикаторную поверхность твердого рабочего электрода из инертного материала (например углеситалла) при отрицательном потенциале рабочего электрода электрохимически осаждают продукты восстановления серебра из анализируемого раствора, представляющего собой анализируемое вещество, растворенное в фоновом электролите, изменением потенциала рабочего электрода электрохимически растворяют указанные продукты восстановления серебра, измеряют величину анодного тока их растворения, идентифицируют пик серебра на вольтамперной кривой и по величине пика определяют концентрацию серебра в анализируемом растворе, отличающийся тем, что фоновый раствор представляет собой серную кислоту концентрации не менее 0,01 моль/дм 3 с добавкой ионов меди таким образом, чтобы в анализируемом растворе суммарная концентрация ионов меди была не менее 3·10 -6 моль/дм 3 , электрохимическое накопление продуктов восстановления серебра из анализируемого раствора проводят при постоянном потенциале рабочего электрода, установленном в диапазоне от -250 до -300 мВ (относительно хлоридсеребряного электрода сравнения), а пик серебра на регистрируемой вольтамперной кривой определяют в области потенциалов от +300 до +500 мВ.

Серебро относится к веществам второго класса опасности. ПДК в питьевой воде в соответствии с СанПиН 2.1.4.1074-01.2.1.4., составляет 0,05мг/дм 3 . ПДК для рыбохозяйственных водоемов 0,01мг/дм 3 . Максимально допустимое значение ртути, разрешенного к сбору в централизованные системы канализации (по приложению №3 к Правилам холодного водоснабжения и водоотведения ) не нормируется.

Для химического анализа воды на содержание серебра применяется дитизоновый(фотометрический метод ) и метод инверсионной вольтамперометрии. Фотометрический метод анализа воды на серебро основан на образовании окрашенного в желтый цвет соединения серебра с дитизоном и дальнейшем извлечении дитизоната серебра в слой четыреххлористого углерода при рН 1,5 - 2,0. Колориметрирование производится по способу стандартных серий по смешанной окраске. Чувствительность метода составляет (объем исследуемой воды 200 мл) 1 мкг/л.

Методические указанияМУ 31-12/06 устанавливают методику выполнения химического анализа массовой концентрации серебра в питьевых, природных, минеральных, сточных водах и технологических водных растворах методом инверсионной вольтамперометрии в диапазоне концентраций от 0,00050 до 0,25 мг/дм 3 включительно.
Методика внесена в Федеральный реестр методик измерений под номером: ФР.1.31.2006.02430 ,
в Реестре методик количественного химического анализа воды и оценки состояния объектов окружающей среды, допущенных для государственного экологического контроля и мониторинга (ПНДФ), под номером: ПНД Ф 14.1:2:4.234-06.

В лаборатории «Экологический мониторинг» вы можете заказать комплексный анализ питьевой воды, воды ливневых сточных вод и промышленных, хозбытовых стоков. Заказать анализ сточных вод , можно оставив заявку на , или воспользовавшись формой обратной связи.

СОЮЗ СОВЕТСНИХСОЦИАЛИСТИЧЕСКИРЕСПУБЛИК А 9 0 01 Б 27/3 САНИЕ ИЗОБРЕТЕНИЯ ЧЕСКОГ 0 ЦЕН- аклюсилн и к елью х кон ения димос- вво- естве ОСУДАРСТВЕННЫЙ КОМИТЕТ СССРО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ(71) Томский ордена Октябрьской Революции и ордена Трудового Красного Знамени политехнический институт им. С.М.Кирова(56) 1. Авторское свидетельство СССР Р 630576, кл. 0 01 Б 27/00, 1977.2. Электрод стеклянный лабораторный ЭСЛ-07. Технический паспорт. Гомельский ЗИП, 1979 (прототип).(54) (57) СПОСОБ ПОТЕНЦИОМЕТРИ ОПРЕДЕЛЕНИЯ МИКРОГРАММОВЫХ КРН ТРАЦИИ ИОНОВ СЕРЕБРА В ВОДЕ, з чающийся в измерении потенциал дикаторногб электрода из алюмо катного стекла в анализируемых либровочных растворах, о т л ч а ю щ и й с я тем, что, с ц расширения диапазона измеряешь центраций ионов серебра, повыш чувствительности и воспроизво ти определения, в оба раствора дят гидроокись кальция в колич 8+1 мг/л.Изобретение относится к способамопределения Физико-химических свойстввеществ в водной среде и может бытьиспользовано для анализа растворовпри производстве полупроводников,в сборных водах, в технологии получения различных иэделий из серебра, его соединений и сплавов,Известен потенциометрическийспособ непрерывного автоматическогоконтроля концентрации различныхионов, в котором использован ионоселективный электрод, содержащийполикристаллическую мембрану на основе халькогенидов и металлическийконтакт. Определяемая концентрациянаходится в интервале 1 моль/л10моль/л Е 13Однако известный способ обладаетневысокой точностью,Наиболее близким к изобретениюпо технической сущности и достигаемому эффекту является способ потенциометрического определения микрограммовых концентраций ионов серебра в воде, заключающийся в измерении потенциала индикаторного электрода из алюмосиликатного стекла ванализируемых и калибровочных растворах 12 1.Недостатком известного способаявляется низкая чувствительностьстеклянного ионоселективного электрода, с его помощью можно определять концентрацию ионов серебра неменее 1080 мкг/л (5,0 ед, рА).Целью изобретения является расширение диапазона измеряемых концен.траций ионов серебра и повышениечувствительности и воспроизводимости определения.1Поставленная цель достигаетсятем, что согласно способу потенциометрического определения микрограммовых концентраций ионов серебрав воде, заключающемуся в измерениипотенциала индикаторного электродаиз алюмосиликатного стекла в анализируемых и калибровочных растворах,в оба раствора вводят гидроокиськальция в количестве 81 мг/л.Определение концентрации ионовсеребра проводилось прямым потенциометрическим способом, в котором использован концентрационный элемент:внутренний полуэлемент стеклянногоэлектрода, внутренний раствор стеклянного электрода, мембрана стеклянного электрода, исследуемый раствор,электролитический ключ с 10-нымСа(МО), электролитический ключ снасыщенным КС 1, электрод сравненияА, 3 ЬС 1.На чертеже изображена предлагаемая установка.Установка содержит стеклянныйэлектрод 1 ЭСЛ-07, электрические ключи 2 двойного солевого моста,емкость З,.заполненную 10-ным раствором Са(МОз)2 , емкость 4, заполненную исследуемым раствором, емкость5, заполненную 10-ным растворомСайОЗ) , емкость б, заполненную на сыщеннйм раствором КС 1, электролитический ключ 7, заполненный насыщеннымраствором КС 1, вторичный прибор 8,мешалку 9, магнит 10.Приготавливалась серия калибровоч ных растворов с заданными значениямиконцентраций ионов серебра, в каждыйиз которых вводилось различное количество фонового электролита. Послеэтого многократно измерялся потенциал электрода на установке с двоичным солевым мостом. Полученные данныеобрабатывались математически. Длядоказательства существенности предла.гаемых в изобретении признаков в качестве фонового электролита применялись растворы гидроокисей натрия,калия, бария и кальция.Исходным для приготовления калибровочных растворов является раствор азотнокислого серебра с концентрацией 1000 мкг/л, который приготавливался из 0,001 н. раствораАХО, В свою очередь, 0,001 н раствор А И О приготавливался из навески АНО с последующим титриметри.30 ческим (по методу мора) определениемконцентрации ионов серебра. Калибровочные растворы и растворы гидроокисей готовились с применением дистиллированной воды, из которой предва рительно был удален СО 2 . УдалениеСО производилось длительным (2-3 ч)кийячением дистиллированной водыс последующим охлаждением воды вемкостях, закрытых стеклянными труб 40 ками, заполненными аскаритом.Насыщенные растворы Са(ОН)2 иВа(ОН) приготавливались растворением2 г/л Са(ОН)2 или Ва(ОН)2 в дистиллированной воде без СО с последующей выдержкой Са(ОН) с осадком в течение 1 сут., после чего растворотфильтровывался. После приготовления серии калибровочных растворовс добавкой растворов гидроокисейнатрия, калия, бария и кальция производилась градуировка электродаЭСЛ-07 на предлагаемой установке,Для этого последовательно каждым изкалибровочных растворов заполняласьемкость 4, электрод выдерживалсяв данном растворе 2 мин (показания,вторичного прибора при этом не записывались, раствор выливался). Затем снова этим же раствором заполнялась емкость 4, после чего записы вались показания электрода через2 мин и 5 мин с момента второго заполнения. По такой же методике производилось измерение потенциала элек.трода в каждом из последующих раство ров, причем измерения осуществлялись1081517 с 10-ным раствором Са(МО) имеетнаибольшую чувствительность и наилучшую воспроизводимость показаний(табл. эксперимент 10).Таким образом, предлагаемый спо соб повышает чувствительность индикаторного электрода и расширяет диапазон измерения серебряного электрода иэ алюмосиликатного стекла вобласть малых значений концентрации 10 ионов серебра до 8,0 ед.рА.Предложенный способ потенциометрического определения микрограммовыхконцентраций серебра в воде представляет большой практический интерес, так как может быть использован в ряде отраслей науки и техники, где требуется определение микроконцентраций серебра.Разработана инструкция прямого потенциометрического определения микроконцентраций серебра с использованием.выпускаемого отечественной промышленностью индикаторного электродаиз алюмосиликатного стекла (типаЭСЛ-07) и подтверждена достоверность предложенного способа на стандартных и производственных растворах различного типа для диапазонадо 8,0 ед.рА. Число Показа- Чувствиизмере- ния при- тельний бора, ность,мВ мВ Концентрациясеребра,мкг/л рА Условия эксперимен.та-81+3 8,0 от большей концентрации к меньшей, По полученным данным строилась градуировочная характеристика электрода в координатах мВ - рА или мВ - мкг/л.Для проведения анализа в мерную колбу на 200 мп добавлялся раствор гидроокиси кальция, после чего объем доводится до метки анализируемой водой. Емкость 4 заполнялась анализируемой пробой и производилось измерение потенциала электрода по методике, которая описана для калибровочных растворов. По графику с градуировочной характеристикой значение потенциала переводилось в концентрацию (мкг/л. Время анализа при настроенной аппаратуре и снятой градуировочной характеристике не более 5 мин. Погрешность единичного определения не более 10.В таблице даны зависимость и воспроизводимость показаний чувствительности А - селективного электрода от условий эксперимента.Индикаторный электрод из алюмосиликатного стекла в водной среде с добавкой гидроокиси кальция в количестве 8 мг/л и применении промежуточного электролитического ключа-120+6 Чувстви- тельность,мВ Лродспжение таблицы Условия эксперимента1081517 Продолжение таблицы Условия экспери- мента Экспе- римент 6 мг/л Са(ОН) 1080 10+2 34 48 5,0 5 мл/л насыщенного Са(ОН) 108 48 34 6,0 10 34 48 7,0/144 8,0 34 6 мг/л Са(ОН) 1080 5,0 40 108 3,8 мл/л насыщенного Са(ОН)2 6,0 40 30 -60+530 -100+5 40/120 7,0 8,0 5,73 14 41+11 1,6 мг/л Са (ОН) 20015 14 2610 100 16 1 мл/л насыщенного Са(ОН) 12 50 14 34/65 8,0 14 Составитель О. АлексееваРедактор Л. Гратилло Техред Т.фанта Корректор А. Тяско Заказ 1539/38 . Тираж 823 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж, Раушская наб., д. 4/5

Заявка

3374826, 29.12.1981

ТОМСКИЙ ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ ИМ. С. М. КИРОВА

ДЕРКАСОВА ВАЛЕНТИНА ГЕОРГИЕВНА, ДЮПИН ВЛАДИМИР КУЗЬМИЧ, МИРОНОВА АНАСТАСИЯ АФАНАСЬЕВНА

МПК / Метки

Код ссылки

Способ потенциометрического определения микрограммовых концентраций ионов серебра в воде

Похожие патенты

Подаче в хлоридный раствор, содержащий примеси кальция и магния, раствора карбоната магния в количестве,обеспечивающем полное отделение кальция, в растворе протекает реакция.Са С 2 + М 9 СОзСа СОз + М 9 С 2В осадок выпадает карбонат кальция, незагрязненнь 1 й гидроксидом магния, а в очищенном от кальция хлоридном раствореостаются ионы магния, уже имеющиеся висходном хлоридном растворе. Таким образом, при использовании в качестве осадителя кальция раствор карбоната магнияполучается чистый от магния карбонат кальция, а в очищенный от кальция хлоридныйраствор не поступают дополнительные катионы, что ведет к достижению поставленной в изобретении цели - повышениюкачества карбоната кальция и очищенногоот кальция хлоридного раствора,...

5 ил. над стенками емкости и соединенные между собой поперечинами 10. Одни концы штанг 4 и 5 шарнирно крепятся крычагам 11, установленным на раме 2, Вторые концы штанг 5 устанавливаются на расположенном на раме 2 валу 12 с помощью соединительных элементов - рычагов 13 и пальцев 14, На конце вала 12 жестко крепится тяга 15. Второй конец центральной штанги 4 крепится к валу 12 с помощью пальцев 16 и рычага 17, который жестко соединен с втулкой 18. Втулка 18 свободно устанавливается на валу 12. С другой стороны втулки 18 крепится кулиса 19 перемешивающего устройсткривошипно-шатунных мехаоложенных по обе стороны ала 20. Шатуны 21 и 22 закрепощипах 23 и 24 оппоэитно отруг друга. Шатун 21 связан с тун.33 связан с кулисой 19,1805047 г.2...

0,02 мг/л, нитратов (ИОз)500 мг/л,Таким образом, в результате всех пределов снижение ХПК 92,07 о, Мобщ.кьельд.91,4,(, СН 20 общ. 90,4 ф.В аналогичном опыте, но беэ использования йай 02, определяли степень сни жения уровня загрязнений по ХПК. Она составила всего 41,4, Уменьшение содержания Йобщ.кьельд, 7,7 1В опыте с добавлением МаИ 02 в количестве 0,43 мас. ед. на 1 ед, ХПК, но без 5 продувки воздухом (вместо этого рас- .твор выдерживали до начала нагревания 2 ч при 16 С), получены следующие результаты: степень снижения содержанияобщ.Кьельд. 83,9;4; ЭФФЕКтИВНОСтЬ раЗЛОжв ния органических веществ раствора (поХПК) лишь 22,4;.Тот же опыт без стадии нагревания (т.е.при 18 оС) с отдувкой легколетучих и аналогичный эксперимент с отдувкой и...


Несложный бытовой электронный прибор, с помощью которого можно легко и быстро приготовить полезные для здоровья и в домашнем обиходе водные растворы серебра различной концентрации. К прибору прилагается Инструкция с описанием способов получения и использования серебряной воды в лечебно-профилактических целях и в быту. СЕРЕБРИН имеет два режима работы и обеспечивает получение растворов с содержанием ионов серебра в широком диапазоне от 0,045 до 0,45 мг/л.

В основе получения водных ионных и коллоидных растворов серебра лежит электролитический метод - пропускание постоянного электрического тока через электроды, погруженные в воду. При этом происходит анодное растворение, т.е. вода насыщается ионами серебра.Концентрация раствора зависит от заданной силы тока и объема обрабатываемой воды.

Аппарат состоит из двух самостоятельных частей:

  • электронного блока
  • картриджа с электродами.

Электронный блок представляет собой корпус - вилку, на боковой поверхности которого расположено гнездо для подключения картриджа. На крышке корпуса расположены сетевой выключатель, переключатель режимов электрического тока и световой индикатор. Картридж выполнен в виде «поплавка», в нижней части которого расположены электроды. Анодом является серебряная пластина, катодом - пластина из нержавеющей стали. Картридж подключен к электронному блоку с помощью соединительного кабеля.
Картридж помещается в емкость с дозированным объемом воды.

Прибор работает от элемента питания 23АЕ - 12 В. Серебрин включается автоматически при погружении в воду и отключается при извлечении прибора из воды.
Время обработки воды контролируется таймером с периодом мигания индикатора 4 секунды.

Основные параметры для 2-х режимов работы прибора (по времени обработки и постоянному электрическому току через электроды)

Примечание:

  1. Концентрация раствора изменяется обратно пропорционально объему используемой воды. Например: для уменьшения концентрации раствора в два раза использовать в два раза больше исходной воды или уменьшить в два раза время обработки.
  2. В качестве исходной можно использовать чистую водопроводную воду, воду природных источников, отфильтрованную воду с минерализацией не менее 100 мг/л.
  3. При использовании воды с минерализацией менее 100 мг/л, в воду добавить поваренной соли.Растворить в стакане воды одну чайную ложку соли и на один литр обрабатываемой воды добавить 0,5 чайной ложки полученного раствора.
  4. Полученный раствор с ионами серебра тщательно перемешать в течение 0,5-1 мин.
  5. В качестве питьевой воды можно использовать раствор с максимальной концентрацией ионов серебра не более 0,05 мг/л.
  6. Растворы с концентрацией серебра более 0,05 мг/л применять в соответствии с инструкцией по применению.
  7. Раствор хранить в непрозрачной стеклянной посуде в темном месте. Срок хранения раствора с «питьевой» концентрацией (0,05 мг/л) не более 30 дней.

Порядок работы

  1. Налить в емкость воду в выбранном объеме (см. Табл. 1).
  2. Вставить штекер кабеля картриджа 2 в гнездо электронного блока, 1.
  3. Опустить в воду картридж 2.
  4. Вставить вилку электронного блока 1 в розетку электросети.
  5. Установить необходимый режим работы переключателем 4. При нажатии кнопки 4 вверх включается режим 1, при нажатии кнопки 4 вниз, включается режим 2.
  6. Подключить аппарат выключателем 3 при этом включится сетевой индикатор. Выдержать необходимое время обработки воды
  7. По окончанию обработки воды отключить аппарат включателем 3, световой индикатор погаснет.

Внешний вид аппарата в эксплуатационном состоянии

1 - электронный блок
2 - картридж с электродами
3 - выключатель сетевой
4 - переключатель режимов
5 - световой индикатор

Таблица 1

ВНИМАНИЕ. Если воду, содержащую ионы серебра прокипятить, серебро частично восстанавливается и переходит в физиологически неактивные формы.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ.

  • Темный налет на электродах можно протереть ватным тампоном, смоченным нашатырным спиртом.
  • Изменения цвета электрода не влияет на работу аппарата.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА.

  1. Гарантийный срок эксплуатации прибора составляет 12 месяцев со дня продажи при условии соблюдения потребителем требованиям настоящей инструкции по эксплуатации.
  2. Предприятие обязуется в течении гарантийного срока безвозмездно отремонтировать прибор вышедший из строя по вине изготовителя.
  3. Гарантия изготовителя не распространяется на приборы имеющие механические повреждения и следы теплового воздействия.

Производитель: Россия, МВП Мелеста

При расчете концентрации серебра в приготовленной воде надо иметь в виду, что количество серебра, растворенного в воде, зависит от показаний силы тока на миллиамперметре и продолжительности процесса электролиза следующим образом:

Расчет необходимой продолжительности приготовления воды рассмотрим на конкретном примере. Пусть необходимо получить 1 литр серебряной воды с концентрацией серебра 5 мг/л; площадь каждого электрода S = 4 см2; рабочую плотность тока примем равной I п = 1 мА/см2.

Определим, что при заданных условиях сила тока через миллиамперметр должна будет составлять: I = I n х S = 1 мА/см2 х 4 см 2 = 4 мА.

В соответствии с таблицей при силе тока в 4 мА в воде за 1 минуту будет растворятся 0,253 мг серебра. Нам же нужно, чтобы в 1 л воды растворилось 5 мг серебра, а это произойдет через 5: 0,253 = 19,7 минут. То есть для того, чтобы в заданных в примере условиях приготовить 1 л серебряной воды с концентрацией 5 мг/л, надо при силе тока через миллиамперметр в 4 мА процесс электролиза осуществлять на протяжении 20 минут.

И в заключение - о том, из какого исходного продукта можно готовить серебряную воду, и как ее хранить и использовать.

Для приготовления серебряной воды можно использовать питьевую воду в которой содержание хлоридов составляет 10-30 мг/л, а сульфатов - не превышает 25л50 мг/л. Таким требованиям соответствует обычная не жесткая питьевая вода из бытового водопровода. Однако такую воду все же лучше предварительно выдержать не менее суток в открытом сосуде для удаления хлорки, а затем прокипятить. После охлаждения воду можно использовать по назначению.

Вода на садово-огородных участках, как правило, характеризуется высокой жесткостью и содержит значительное количество солей, вступающих в реакцию с ионами серебра, в результате чего на электродах образуются нерастворимые соединения, что приводит к уменьшению выхода серебра. Хлопья и муть различного происхождения в природных водах также уменьшают эффективность обеззараживания ее серебром, которое в этом случае будет оседать на поверхности посторонних частиц. Такую жесткую природную воду следует сначала прокипятить, а потом отстоять ее в течение суток. После этого воду надо аккуратно слить и использовать по назначению.

Приготовленную серебряную воду хранят в неметаллической посуде в темном месте. Нельзя допускать также нагревания воды и хранения ее на солнце, так как в этом случае она чернеет и быстро теряет свои дезинфицирующие свойства.

Для профилактики нозематоза серебряную воду в концентрации до 5 мг/л используют при подкормке пчел на зиму и во время ранневесенней подкормки, а в концентрации до 0,5 мг/л наливают ее также в поилки.

При приготовлении сиропов с серебряной водой ее можно соединять с сиропом только тогда, когда он остынет до 35-40 °С. Для этого готовят сироп обычным образом, но воды берут на 25% меньше, чем надо. После размешивания сахара в кипятке и остывания сиропа недостающее количество воды добавляют серебряной водой. В этом случае концентрация ионов серебра должна быть больше, чем у воды, которую дают в поилки.

Серебряную воду с концентрацией до 5 мг/л можно также использовать для дезинфекции ульев, рамок, инвентаря. Усилить дезинфицирующие свойства этого раствора можно, добавив в него перекись водорода с концентрацией 3 мг/л.

Причины осеннего слета пчел
Для однозначности толкования и понимания рассматриваемого явления хочу предложить определение: «Осенний слет пчел - это такое явление, при котором пчелиная семья осенью постепенно и неконтролируем...

Основные причины болезней пчел
Пчелиная семья представляет собой единую биологическую единицу, и в случае заболевания одного из ее членов (матки, трутня, рабочей пчелы или расплода) нарушается нормальная жизнедеятельность всей...

Основные элементы технологий интенсивного пчеловождения и их обоснование
Основными составляющими элементами технологий интенсивного пчеловождения являются: 1. Использование пчеломаток с высокими наследственными задатками (чистопородность, высокая яйценоскость, устойчиво...